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(Received 18 December 1960)

The parameters describing the disordered state of solid
solutions are, generally speaking, in correspondence to
their counterparts in X-ray diffraction phenomena;
namely the long-range order parameters are related to
the integrated intensities of superlattice reflections, and
the intensity distributions of X-ray diffuse scattering are
interpreted in terms of the short-range order parameters
(Cowley, 1950). There are other parameters, however,
which specify the state of order more in detail; e.g. we
can cite the probability p;, of finding a particular kind
of constituent atom, say, 4, at a given site ¢, which
Zernike (1940) made use of in discussing the problem of
the propagation of order throughout the lattice (Muto &
Takagi, 1955).

On the other hand, there is a method of analyzing
the disordered structures by means of the Fourier trans-
formation of the amplitude distribution of diffuse scatter-
ing (Doi, 1957, 1960a). The phase assignment required
for deriving the amplitudes is made on the assumption
of the statistical centrosymmetry for the structure g(x)
under examination; i.e.

o(x)" = o(—x)%, (1)

where L stands for a triplet of integers (L, L,, L;)
determined in accordance with the resolving power with
which we observe the diffuse scattering (Doi, 1957), and

Q(x)L means the value of the electron density averaged
over the points

X +myL,a; +myLya, +myL,a,
(my, my, mg=+0, +1, +2, +3, ..., etc.),

a,, a,, a, being the lattice translations. The results of
the analysis can afford more detailed information than
that furnished by the intensity distribution and repre-
sented by the order parameters mentioned above.

The method was applied (Doi, 1960b) to the two-
dimensional section of the diffuse scattering observed
for AuCu, above the critical point (Cowley, 1950), giving
as results the fraction of Au atoms at each lattice site
forming a two-dimensional lattice which is the (001)
projection of f.c.c. structure.

It is readily seen here that when the three-dimensional
analysis is made in a similar way, namely using the func-
tion @p(x) as defined:

pH(X) = S A(s)K(s —su) exp 2ni(s —Sy.X)dvs

sin 70,8, 8in 7a,8, SiN 72@48, (
K(S) = ’

T8, TSy, 785

with proper choices of relpoints H, and a phase assign-
ment for A(s) assuming the statistical centrosymmetry
(1), the Au-fraction of each lattice site will be derived
with procedures analogous to those used for the two-
dimensional analysis (Doi, 1960b0). In fact gu(X) can be
rewritten:
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pu(x) = { ox)A(x' ~x) exp —2mi(sn.x')dv, 3)
with
1 for || <fay, |%al <ay, x5l <das
4x) = { 0 otherwise, (4)

and the value of gu(xy) for

Xn =5(2n, + 1)a; +3(2n, + 1)a, + 3(2n, + 1)a,
(N, my, my =0, £1, £2, ..., ete.) (5)

can be expressed as a linear combination of electronic
contents at the 4 neighbouring lattice sites surrounding
the point (5) and forming a cube with edges {a,, $a,, 1a,,
which are therefore to be determined from the values of
@H(Xn)'s for 4 independent H’s.

The electronic content of each site thus derived is
directly related to the Au-fraction at each site, which is
to be identified with the probability parameter p; as
defined by Zernike, as it is referred to the averaged

structure Q(X)L with L, L,, L, much smaller in general
than the dimensions of coherent domains constituting
the crystal under examination.

The feasibility of deriving p;’s from diffraction data
depends on the possibility of phase assignment of A(s)
in three-dimensional reciprocal space, i.e. the validity of
the condition (1). The condition claims that, though the
structure go(x) itself is not centrosymmetric, we can put
a three-dimensional lattice

myLya; + myLoa, +myLia,
(m11 My, Mg =0, +1, +2, ..., etc.) (6)

within it so that the structure Q(X)L averaged over all
the cells of (6) having edges L,a,, L,a,, L,a, proves
centrosymmetric. The lattice points of (6) correspond to
the origin of g(x)L, i.e. the lattice site (000) for which
the value of p(000) should be 1-00 after Zernike’s defini-
tion.

It is not expected, however, that all the lattice points
of (6) coincide with atomic sites where Au atoms are
always found, unless L become comparable to the
dimensions of coherent domains of which the crystal is
constituted. The value of p(000) derived from diffraction
data may thus be in general inferior to 1:00. For the
greater values of L, p(000) derived would tend to 1-00,
but the validity of the condition (1) is not expected to
be intact for the greater values of L comparable to the
dimensions of the eoherent domains. The deviation of
p(000) from the expected value of 1-00 will thus measure
the amount of resolution with which we observe the state
of order in the structure.

We can therefore conclude that if we can fix the value
of L such that the condition (1) holds and the value of
p(000) is not appreciably deviated from 1-00, the prob-
ability parameter p;'s as defined by Zernike can be
determined, and the problem of the order propagation
in solid solutions may be discussed on the basis of the
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structure analysis made by means of the Fourier trans-
formation of amplitude distribution using the g-functions
given by (2).

I am grateful to Dr Y. Takagi for kindly reading the
manuscript.
References

CowLEy, J. M. (1950). J. Appl. Phys. 21, 24,

Acta Cryst. (1961). 14, 794

SHORT COMMUNICATIONS

Do1, K
325.

Dor, K. (1960a). Acta Cryst. 13, 45.

Doz, K. (1960b). J. Phys. Soc. Japan, 15, 1815.

Muro, T. & Takacr, Y. (1955). Solid State Physics, Vol. 1.
ed. Seitz & Turnbull. New York: Academic Press.

ZERNIKE, F. (1940). Physica, 7, 565.

(1957). Bull. Soc. frang. Crist. Minér. LXXX,
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Published reports on the thermal expansion of sodium
fluoride and sodium bromide are few and restricted in
scope. (See Krishnan, 1958). On NaF the only results
available are those of Henglein (1925) for low tempera-
tures and the room-temperature values quoted by Megaw
(1939) and Wooster (1949). For NaBr, besides Henglein’s
(1925) work there are reports from Baxter & Wallace
(1916) and Straumanis, Jevins & Karlsons (1938). The
former give average values of cubical expansion for the
ranges of temperature 0-25 °C. and 25-50 °C., and the
latter give the coefficient of expansion between 15 and
60 °C. as obtained by X-ray method. Recently the author
(Deshpande, 1955) has studied both these halides at
elevated temperatures by the X-ray method, and the
results are reported below.

The experimental set-up and the computational proce-
dure have been described elsewhere (Deshpande &
Mudholker, 1960; Deshpande & Sirdeshmukh, 1961).
The only special feature of the present work is the
hiygroscopic nature of NaBr. With careful drying over
P,0; in a vacuum dessicator and the use of an air-tight
cellophane cover on the specimen, it was possible to
obtain quite satisfactory results.

Table 1. Lattice constants of NaF and NaBr at
different temperatures

Termpera- Lattice constant Tempera- Lattice constant
ture of NaF ture of NaBr
29:6 °C. 4-6340 A 31:5 °C. 59738 A
68-1 4-6400 827 5-9879
108-0 4-6466 1194 5-9985
148-0 4-6537 160-0 60110
176-0 4-6585 252-0 6-0389
208-0 4-6648 — —
2540 46726 — —

Lattice constants of the two salts at various tem-
peratures are given in Table 1. The estimated accuracy
of the values is +0-0001 A. Table 2 gives the coefficients
of thermal expansion as defined by o =1/ay(da/4dt).
Least-squares treatment of the « —¢ data gives the fol-
lowing equations for the temperature dependence of the
coefficients of thermal expansion.

Table 2. Coefficients of thermal expansion of NaF and NaBr

NaF NaBr
Tem- o4 * A * T~ A
perature (exp.) (calc.) (exp.) (calc.) &
30 °C. 34-00 34-00 0-0 44-84 44-84 0-0
70 3475 35-17 +0-42 46-89 46-41 —0-48
110 36-60 36-3¢ —0-26 47-90 47-93 +0-03
150 37-78 37:51 —0-27 49-24 49-70 +0-46
190 38-86 38-68 —0-19 51-83 5142 —0-41
230 39-94 39-85 —0-09 53-18 53-:09 —0-09
250 40-04 40-43 +0-39 — — —
NakF':
x=3313 x 1076 4 29-20 x 10-9.¢.
NaBr:

«=4369 x 107+ 37-77 x 10~°%.£ 4+ 15-21 x 10712 _¢2,

Values calculated from these equations are also given
in Table 2 along with the differences between the ex-
perimental and calculated values. The differences are all
about 19,.

The author wishes to express his sincere thanks to
Prof. S. Bhagavantam, under whose guidance this work
was carried out.
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